Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
نویسندگان
چکیده
منابع مشابه
Deep patch learning for weakly supervised object classification and discovery
Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background. Many existing methods usually require fine-grained supervisions (e.g., bounding-box annotations) to learn patch features, which requires a great effort to label images may limit their potential applications. In this ...
متن کاملDeep Residual Learning for Weakly-Supervised Relation Extraction
Deep residual learning (ResNet) (He et al., 2016) is a new method for training very deep neural networks using identity mapping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-theart performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well underst...
متن کاملSelf Paced Deep Learning for Weakly Supervised Object Detection
In a weakly-supervised scenario, object detectors need to be trained using image-level annotation only. Since bounding-box-level ground truth is not available, mostof the solutions proposed so far are based on an iterative approach in which theclassifier, obtained in the previous iteration, is used to predict the objects’ positionswhich are used for training in the current itera...
متن کاملWeakly-Supervised Deep Learning for Customer Review Sentiment Classification
Sentiment analysis is one of the key challenges for mining online user generated content. In this work, we focus on customer reviews which are an important form of opinionated content. The goal is to identify each sentence’s semantic orientation (e.g. positive or negative) of a review. Traditional sentiment classification methods often involve substantial human efforts, e.g. lexicon constructio...
متن کاملLearning deep structured network for weakly supervised change detection
Conventional change detection methods require a large number of images to learn background models or depend on tedious pixel-level labeling by humans. In this paper, we present a weakly supervised approach that needs only image-level labels to simultaneously detect and localize changes in a pair of images. To this end, we employ a deep neural network with DAG topology to learn patterns of chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Digital Medicine
سال: 2021
ISSN: 2398-6352
DOI: 10.1038/s41746-021-00469-6